Archive for Abril, 2010

 

 

 

Anterior: PRINCIPIO DE EQUIVALENCIA DE EINSTEIN (I)

 

 

LAS CONTRADICCIONES DEL PRINCIPIO DE EQUIVALENCIA (pág. 47)

 

       El principio de equivalencia de Einstein es la piedra angular en la que se fundamenta la teoría de la relatividad general. Si aquél resultara ser falso, así también ésta. En tal caso, tanto las ecuaciones de movimiento, las geodésicas gravitatorias, como las ecuaciones de campo de la relatividad general, las Ecuaciones de Einstein, serían falsas.

       La postulación del principio de equivalencia, con el que Einstein en un inicio tan sólo pretendió justificar sus geodésicas gravitatorias, contiene múltiples sofismas. Antes hemos visto que aparte de presuponer la identidad entre la masa inercial y la masa gravitacional, también presupone, falazmente, la siguiente identidad: ‘grave’ = ’cuerpo libre’. Sobran motivos, pues, para la crítica y la duda razonables: ¿Las famosas ecuaciones tensoriales DU=0, las geodésicas gravitatorias de Einstein, mera extensión tetradimensional de dv=0, se fundamentan sobre sensato sentido alguno?

 

       A pesar de que al inicio de sus argumentaciones es el propio Einstein el que destaca la sorprendente posibilidad de que puedan existir diferentes tipos de masa, es el mismísimo Einstein el que nunca ha cesado de presuponer que la masa inercial y la masa gravitacional son idénticas, como si una vez asegurada la completa identidad entre ambos presupuestos tipos distintos de masas, ya no pudiese restar la menor duda acerca de que las ecuaciones de movimiento en un campo gravitatorio no pudiesen ser otras que las que él nunca ha cesado de defender, las geodésicas gravitatorias de la relatividad general: DU=0. Tales geodésicas gravitatorias de Einstein, como antes se ha explicado, no son más que una confusa e ininteligible generalización tetradimensional del “principio de equivalencia y de inercia de Galileo-Newton”, dv=0.

       Es claro y cierto que en la vieja teoría de la Gravitación Universal de Newton, si la masa inercial es idéntica a la masa gravitacional, los graves obedecen localmente el principio de equivalencia de Galileo para la caída libre: aceleraciones relativas nulas: dv=0. Pero todavía es más cierto, en el contexto de las teorías newtonianas, que si la masa inercial no es exactamente igual a la masa gravitacional, entonces dv, o DU, ya no será rigorosamente igual a cero (todavía es muchísimo más cierto que dv=0 no es más que un simple caso particular de la 2ª ley de Newton que tan sólo obedecen los cuerpos libres, que nada tienen que ver con los universalmente gravitantes graves newtonianos). ¿Por qué Einstein se entretiene en simular la posibilidad inicial, opuesta a la que después querrá defender, de que no sean idénticas?

       Einstein se olvida de que la aceleración de los graves en cualquier otra posible teoría que no sea la de Newton (precisamente lo que pretende Einstein es crear una nueva teoría de la gravitación, que no sea la de Newton) también puede depender a priori, aparte de la masa, de muchísimos otros “ininmaginables” parámetros, como… ¿por ejemplo?… (ahora lo veremos) ¿No resulta extraño que Einstein se enrede en un problema, la fingida posibilidad de que la masa inercial no sea idéntica a la masa gravitacional, cuando ya de antemano ha querido forzar la conclusión, de otro modo no habría sabido cómo justificar sus geodésicas gravitatorias, de que es imposible que ambos tipos de masa puedan ser distintos? Si la posibilidad en un inicio analizada por Einstein de que la masa inercial pudiese ser distinta a la masa gravitacional se hubiese probado exitosa, ¿cómo hubiese podido al final justificar Einstein sus geodésicas gravitatorias DU=0?

       Cuan más astuto, más confuso, Einstein pretende desviar la atención hacia la masa de los graves. Einstein intenta reducir el problema de la caída de los graves en el problema artificial de si pueden existir distintos tipos de masa, cuando la cuestión relevante para sus nuevas teorías no estriba en saber si la aceleración de la caída puede depender de la masa del grave, sino en si depende de su velocidad. ¿No resulta extraño y sospechoso que al propio Einstein le pasara desapercibido tan “inimaginable” parámetro: la velocidad? ¿Depende la aceleración gravitatoria de la velocidad (la velocidad con respecto a la tierra, por ejemplo)?

       ¿Hay que comenzar el estudio del problema de cómo construir una nueva teoría de la gravedad que supere la caduca teoría de Newton con el análisis, como pretende simular Einstein, de los posibles distintos calificativos que puedan corresponder a la substancia, la masa, o se trata de desentrañar qué predicados cinemáticos y dinámicos corresponden al sujeto substancial, en tanto que a su vez es grave? ¿No es cierto, calificativos aparte, que el significado de ‘masa’ para las teorías de Newton es incommensurable con el de cualquier otra posible teoría distinta a la de Newton (precisamente lo que pretende Einstein es crear una nueva teoría de la gravitación, que sea distinta a la de Newton) y que, en consecuencia, las implicaciones que una completa igualdad entre la masa inercial y la masa gravitacional puedan tener en la teoría de Newton (dv=0, o DU=0, desde el peculiar punto de vista del célebre observador del ascensor en caída libre de Einstein) jamás deberán ser establecidas como premisas fundacionales con las que crear una nueva teoría de la gravedad que supere la caduca teoría de Newton?

       Después de haber asegurado Einstein en su primera teoría de 1905, la relatividad especial, que la velocidad máxima posible de la naturaleza es la constante ‘c’ (cosa que implica, para Einstein, que la aceleración de un cuerpo cuya velocidad ya sea ‘c’ tiene que ser nula, de lo contrario, si su aceleración no fuese nula, significaría que su velocidad aún continúa aumentando, en contradicción con que ‘c’ represente la velocidad máxima de la naturaleza), la pregunta capital inicial que debería haber preocupado a Einstein nada debería haber tenido que ver con la masa, sea calificada inercial, sea calificada gravitacional,… de los graves. ¿Cómo es posible que fuese precisamente el mismísimo creador de la teoría de la relatividad especial el que se olvidara de analizar qué papel desempeña la velocidad en el movimiento acelerado de caída libre de los graves?

       La piedra angular de Einstein a la hora de generalizar la relatividad especial (por cierto, ¿cómo se puede denominar “relatividad “general”” a una teoría que no reconoce la relatividad del movimiento y que aún defiende los movimientos de rotación absoluta con respecto al espacio absoluto de Newton y los tan especiales y “privilegiados” sistemas de referencia inerciales?) nada debería haber tenido que ver con lo que antaño hubiese podido preocupar a Galileo… o ni siquiera ocupar a Newton.

       Es cierto y claro que a Galileo Galileo le preocupaba, ante todo, la posible independencia de la aceleración gravitatoria de la masa del grave, pero lo que, sobre todo, debería haber preocupado a Albert Einstein es la posible dependencia de la aceleración gravitatoria de las velocidad del grave: ¿Depende la aceleración gravitatoria de caída libre de los graves de la velocidad?

       Sólo hay dos respuestas posibles, y no: (PRINCIPIO DE EQUIVALENCIA DE EINSTEIN (III))

Xavier Terri

Abril, 2010

 

 

(Por si aún no ha quedado claro o todavía ha quedado confuso, intentaremos publicar la tercera parte, la que sigue a la segunda que sigue a la primera, de esta presente concatenación de artículos antes de 4 ó 5 semanas y media)

Seguir la pista…

 

 

 

 

Comments 1 Comment »

 

TRACTATUS PHYSICO-PHILOSOPHICUS

 

 

 

Albert Einstein construyó su teoría de la gravedad, la Relatividad General, basándose en el célebre Principio de Equivalencia.

 

       Galileo Galilei creía que todos los graves, con total independencia de cuales puedan ser sus masas correspondientes o cualquier otro inimaginable parámetro, caen a un mismo ritmo en un campo gravitatorio. Si una hoja de papel y una bola de acero presentan diferentes aceleraciones de caída libre con respecto a la tierra, ello no es debido a la sola acción de la gravedad, sino a que la primera ofrece más resistencia al aire que la segunda. Para estudiar la acción propia de la gravedad sobre los graves hay que prescindir de cualquier posible efecto colateral que no le sea propio. De tal modo que, toda vez que ya haya sido excluido lo que a la gravedad le es del todo impropio y que como a tal no le pertenece, y si de paso se ha conseguido eliminar por completo la resistencia que el aire ofrece a los graves y cualquier otro posible indeseable efecto colateral, todos los graves obedecerán, sin apenas dudarlo y con total independencia de cuales puedan ser sus correspondientes masas o cualquier otro parámetro inimaginable, las irrebatibles tesis de Galileo sobre el movimiento equivalente de los graves, a saber: “todos los graves caen con la misma aceleración con respecto a la tierra”.

       Tales irrebatibles tesis galineanas, a pesar de ser, como más tarde se demostrará en el presente artículo, absolutamente contrarias a las premisas establecidas por la teoría de la relatividad especial de 1905, no se atrevió a rebatirlas ni el mismísimo creador de esta primeriza teoría especial de la relatividad: Albert Einstein. La irrebatible prueba sobre ello es que a la hora de crear la relatividad general, supuesta generalización de la relatividad especial, Albert Einstein no supo inagurar otro camino que no fuese resucitar este viejo principio de equivalencia de Galileo, principio que es absolutamente contrario, como se demostrará más tarde en el presente artículo, a las tesis expuestas por el primer Einstein en su primeriza teoría de la relatividad especial de 1905.

       Esta equivalencia en la aceleración de la caída libre (en realidad, como también se demostrará en el artículo presente, tal caída no es ‘libre’, sino debida a la fuerza real de la gravedad) de todos los graves exigida por Galileo tiene una muy fácil explicación en el contexto de las teorías de Newton si se postula la igualdad entre la masa inercial, la que interviene en la segunda ley de Newton, y la masa gravitacional, la que interviene en su ley de la gravitación universal. Como se sabe, la ecuación obtenida al igualar entrambas leyes ofrece la posibilidad de simplificar ambas masas, resultando, si se hace uso de dicha posibilidad, una aceleración que no depende de la masa del grave: depende tan sólo de la masa de la fuente gravitatoria y de la distancia, la “altura”, del grave al centro de esta fuente. (La antedicha posibilidad, en tanto que ofrece la libertad y la flexibilidad de poder ser actualizada, o no ser actualizada, es una virtud epistemológica de las teorías de Newton. Por el contrario, la relatividad general no tiene otra posibilidad que presuponer a priori la absoluta identidad entre la masa inercial y la masa gravitacional, sin la más mínima libertad para poder indagar otras posibles alternativas.)

       Por lo tanto, según las teorías newtonianas, siempre y cuando la masa inercial sea idéntica a la masa gravitacional, todos los graves presentan un movimiento de caída libre gravitatoria equivalente, que es lo que ya aseguraba Galileo en virtud de lo que él entendia por ‘gravedad’, sin que Galileo, el gran inventor del método científico, tuviese la menor necesidad de corroborar ni empírica, ni científicamente, sus afirmaciones sobre la caída libre equivalente de todos los graves. Al fin y al cabo, si los graves no obedeciesen el principio de equivalencia de Galileo, ¿no sería, sin que apenas sea necesario dudarlo, por culpa de sobrevenidas e indeseables causas colaterales? ¿Acaso no han existido siempre sobrevenidas e indeseables causas colaterales que han obstaculizado, siempre, el justo reconocimiento de cualquier nueva teoría, por muy irrebatible que pudiese parecer?

 

       (Hoy en día, más que cierta prueba de verdad, el método de la “verificación” empírica se ha convertido en el modus vivendi de demasiados intereses. Parece obvio que la célebre experiencia de Galileo, soltando graves desde la Torre de Pisa, no es más que un mito. Por necesidad, nunca acaeció. Al inventor del método científico le bastaba con estudiar el movimiento de los graves sobre un plano inclinado.

       Fuerza tienen las ideas. Un Galileo detesta que la veracidad de sus teorías pueda tan sólo depender de las toscas, ahora muy costosas, verificaciones empíricas. Si a algún entusiamado entendedor de las teorías galineanas se le hubiese ocurrido lanzar objetos desde la Torre de Pisa con el pomposo propósito de verificar las ideas del maestro, Galileo Galilei, tras el tan previsible e interesado éxito de aquél, le habría espetado lo mismo que Einstein al Eddington de los eclipses solares: ¡Ya lo sabía!

       …Aparecen luces que jamás eclipsarán… , mas retuercen ideas y oscurecen las más lúcidas mentes.)

 

       Imaginemos un observador que está cayendo hacia la tierra. ¿Cómo observa el movimiento de los demás graves que, al igual que él, también están cayendo hacia la tierra? Observa, si la equivalencia de caída libre gravitatoria de Galileo es rigorosamente cierta, que la aceleración relativa de los demás graves, al menos la de los que se encuentran en su entorno inmediato, es nula. Si el principio de equivalencia de Galileo es rigorosamente cierto, entonces la aceleración de dicho observador con respecto a la tierra será exactamente la misma que la de los demás graves, con lo cual, en efecto, las aceleraciones relativas entre todos ellos resultarán ser nulas. Desde el peculiar punto de vista particular de este observador, el movimiento relativo de todos los graves cumplirá, expresado en lenguaje matemático, la sencilla ecuación: dv=0 (variación nula del vector velocidad, es decir, aceleraciones relativas de los graves nulas).

       Por otro lado, como bien sabido es, Isaac Newton recuperó el principio de inercia de Descartes y Galileo para convertirlo en la primera de sus famosas 3 leyes: la 1ª ley de Newton, o ley de inercia. El principio de inercia se convirtió, como es bien sabido, en un simple caso particular de la ecuación fundamental de la dinámica newtoniana, la 2ª ley de Newton. Un sistema inercial es, por definición, un sistema de referencia en el que se cumple la ley de inercia de Newton, esto es, aquél con respecto al cual los cuerpos libres permanecen en reposo o en movimiento rectilíneo uniforme (y un sistema no-inercial es, por definición, un sistema de referencia en el que no se cumple la ley de inercia de Newton. De donde se infiere, por la propia necesidad de tener que reconocer sistemas no-inerciales, que, en general, la ley de inercia no se cumple; luego es falsa). Expresado en lenguaje matemático, según Newton, un sistema de referencia inercial es aquél con respecto al cual el movimiento de los cuerpos libres cumple la sencilla ecuación matemática: dv=0 (variación nula del vector velocidad, es decir, aceleraciones relativas de los cuerpos libre nulas).

       Inicialmente inspirado por el principio de equivalencia de Galileo, dv=0, tal vez el observador que está cayendo hacia la tierra, en tanto que sobre todo es un sujeto pensante que piensa, llegue a pensar finalmente que todos los graves, a pesar de no ser cuerpos libres (actúa sobre cada uno de ellos la fuerza de la gravedad), se mueven con respecto a él, a pesar de no ser un sistema inercial newtoniano (actúa sobre él la fuerza de la gravedad) de tal modo que obedecen la misma ley matemática con la que Newton caracterizó el movimiento de todos los cuerpos libres con respecto a un sistema de referencia inercial newtoniano: dv=0.

       Para un observador en caída libre gravitatoria, el resto de los graves no presentarán aceleraciones relativas, esto es, permanecerán, con respecto a él, en reposo o en movimiento rectilíneo uniforme. Esta ausencia de aceleraciones relativas, este aparente y ficticio estado de ingravidez del observador, es lo que explica Einstein en su célebre gedanken experiment del ascensor en caída libre gravitatoria. Y presuponiendo que todos los graves no sólo obedecen el principio de equivalencia de Galileo, sino que, además, se comportan los unos con respecto a los otros del mismo modo que los cuerpos libres con respecto a los sistemas de referencia inerciales postulados por la ley de inercia de Newton, Einstein establece, amparándose en esta aparente y dispar doble analogía, su disparatado principio de equivalencia, cuyo enunciado reza:

 

        “Todo sistema de referencia en caída libre gravitatoria es inercial (localmente inercial, si el campo gravitatorio no es uniforme)”

 

       ¿Alguien es capaz de entender tan ininteligible enunciado? ¿Un grave es un cuerpo libre? ¿No confunde Einstein un grave, cuerpo sometido a la fuerza real de la gravedad, con un cuerpo libre, cuerpo sobre el que no actúa fuerza neta alguna? Convencido de que semejante estado de ingravidez relativa es real, e inspirándose en su novedoso principio de equivalencia, que de hecho entremezcla y confunde lo que hace siglos ya decían Galileo y Newton, Albert Einstein postula que todos los graves están obligados a obedecer las mismas ecuaciones de movimiento que las de los cuerpos libres: las célebres geodésicas gravitatorias de su teoría de la relatividad general: DU=0. (La diferenciación covariante “D” es la generalización matemática de la diferenciación ordinaria “d”; la tetravelocidad U es la generalización de la velocidad tridimensional v)

       Como se ve, las ecuaciones de movimiento de la relatividad general, las geodésicas gravitatorias DU=0, no son más que una generalización matemática tetradimensional y descontextualizada de la suma imposible de las anteriores ideas de Galileo y de Newton. Ideas que, a pesar de hacer referencia a problemas completamente distintos, acaban desembocando, como antes se ha explicado, en una misma ecuación: dv=0. ¿Se trata de la generalización tetradimensional acertada? ¿Existe alguna alternativa sensata? (Tractatus, pág. 141)

       No todos los ríos fluyen hacia el mismo mar: Las geodésicas gravitatorias de Albert Einstein son el resultado de una extraña mezcla desinspirada en el principio de equivalencia de Galileo (que hace referencia al movimiento de los graves) y en los sistemas inerciales postulados por la ley de inercia de Newton (que hace referencia al movimiento de los cuerpos libres, entre los cuales los graves no se incluyen). La verdadera nueva ecuación fundamental para el movimiento de la física no deberá tratar del mismo modo los graves que los cuerpos libres: Tan sólo son los cuerpos libres los que obedecen las ecuaciones geodésicas, no existen geodésicas gravitatorias.

       A través de la ficticia analogía que establece con la ley de inercia de Newton, el principio de equivalencia de Einstein afirma que los sistemas de referencia en caída libre gravitatoria, los graves, son sistemas inerciales newtonianos. Pero esto es contradictorio. Puesto que la aceleración de la gravedad depende de la altura, graves situados a diferentes alturas presentarán diferentes aceleraciones con respecto a la tierra y, por lo tanto, sus aceleraciones relativas no serán nulas. En cambio, las aceleraciones relativas de los sistemas inerciales newtonianos, por permanecer todos en reposo, o en movimiento rectilíneo uniforme, con respecto al común espacio absoluto inventado y fantaseado por Newton, son nulas. (Tractatus, pág. 49.)

 

       (Cuestiónese la pura evidencia: ¿Comprende la teoría de la relatividad la relatividad del movimiento? ¿Por qué la teoría de la relatividad de Einstein aún cree en el espacio absoluto y en los sistemas de referencia inerciales de Newton? ¿Por qué según la teoría de la relatividad la tierra “aún” presenta un movimiento de rotación absoluto, no relativo, sobre sí misma? ¡Relativistas! ¿Rotación absoluta con respecto a qué? ¿Por qué las relativistas Ecuaciones de Einstein todo saben sobre el mismísimo origen absoluto del universo y nada saben sobre la absoluta relatividad del movimiento? Si no existen referencias absolutas, ¿entonces no es completamente obvio y evidente que existen, diga lo que quiera la bola de cristal LHC, velocidades infinitamente superiores a “c”? ¿En que consiste la nueva revolución copernicana? ¿Acaso Albert Einstein aún creía en la existencia real del absolutamente inmóvil sensorio de Dios, la mismísima substancia absoluta e inercial con la que Isaac Newton quiso tan sólo insinuar, tal vez, los puntos oscuros de sus propias teorías y de sus principios matemáticos de filosofía natural de 1687?

       A pesar de todo, más que de Newton, Einstein fue sucesor de Galileo: ¿Cuál es la única alternativa posible a las geodésicas gravitatorias del principio de equivalencia de Galileo-Einstein?)

 

       A través de la ficticia analogía que establece con el principio de equivalencia de Galileo, el principio de equivalencia de Einstein afirma que la caída libre de los graves no depende ni de sus correspondientes masas, ni de cualquier otro inimaginable parámetro (¿Cuál será este otro “inimaginable parámetro”?). Pero esto, como ahora vamos a comprobar, contradice no sólo las premisas establecidas por el primer Einstein de 1905, sino que también contradice las premisas de la moderna teoría de la relatividad general, supuesta generalizazión de la primeriza teoría de Einstein, la relatividad especial de 1905, y subsiguente teoría general que el segundo Einstein construyó ¡curioso, eh! siguiendo premisas que estaban inspiradas en su novedoso principio de equivalencia de Einstein, esto es, el contradictorio, confuso e ininteligible principio de equivalencia y de inercia de Galileo-Newton-Einstein de Albert Einstein.

 

Xavier Terri Castañé

Abril, 2010

 

 

       (Por si no ha quedado claro o ha quedado confuso, intentaremos publicar la segunda parte del presente artículo antes de 3 o 4 semanas)

 

 

Lecturas relacionadas:

-LibroVirtual

-¿Principio de Equivalencia de Einstein o nuevo Principio de inercia generalizado?

 

Comments 1 Comment »